Contents

1.	Intr	oduction	 1				
	1.1	Background	1				
	1.2	Objective	2				
	1.3	Scope	2				
	1.4	Storage tank inspection options	2				
	1.5	Inspection planning and analysis levels	3				
	1.6	Overview of application of this guidance	4				
	1.7	Definitions	4				
	1.8	Nomenclature	7				
2.	Stat	Statistical methods in support of partial inspection					
	2.1	Partial coverage inspection	8				
	2.2	Corrosion characteristics	8				
	2.3	Key concepts	9				
		2.3.1 Use of quantitative data for inferring the characteristics of a population based of	on				
		sample measurement	9				
		2.3.2 Statistics of binary outcomes	10				
3.	Cor	Corrosion risk assessment (CRA) in support of inspection planning 1					
	3.1	Background	11				
	3.2	Expected severity of corrosion and aims of the inspection	11				
	3.3	Internal and external corrosion depths	11				
	3.4	Spatial characteristics of corrosion	12				
4.	Cases where detectable wall loss is not expected (Type A)						
	4.1	Introduction	17				
	4.2	Determination of appropriate coverage	17				
	4.3	Distribution of coverage	25				
	4.4	Evaluation on completion of the inspection	25				
5.	Case	es where detectable wall loss is expected (Type B)	26				
	5.1	Introduction	26				
	5.2	Extreme value analysis overview	27				
		5.2.1 Extreme value distribution and types	27				
	5.3	Summary of the analysis process	29				
		5.3.1 Selection of data for use in the analysis					
		5.3.2 Identification of the appropriate distribution type	33				

	5.3.3	Determination of the parameters for the distribution	39
	5.3.4	Estimates for the uninspected area	41
	5.3.5	Estimates for corrosion rates	46
5.4	Defini	ing the required inspection coverage	47
5.5	Distrik	oution of coverage	52
6. Cas	es whe	re wall loss may be severe but isolated	53
7. Sur	nmary	of analysis level	54
7.1	Introd	luction	54
7.2	Type /	A inspections	54
	7.2.1	Level 1	54
	7.2.2	Level 2	56
7.3	Type I	B inspections	57
	7.3.1	Level 1	57
	7.3.2	Level 2	59
7.4	The L	evel 3 approach	61
7.5	Repor	ting requirements	62
		Inspection report	
A.1		A inspection strategies	
	, ,	B inspections	
Appen		Examples of Level 1 and Level 2 application	
B.1		ple 1: Level 1 Planning for Type A inspection	
B.2		ple 2: Level 2 Planning for Type A inspection	
B.3		ple 3: Level 1 Planning for Type B inspection	
B.4		ple 4: Level 1 Evaluation for Type B inspection	
B.5	Exam	ple 5: Level 2 Evaluation for Type B inspection	74
Appen	dix C -	Summary of statistical distributions	79
C.1	Type	1 (Gumbel) Distributions	79
C.2	Gene	ralised Extreme Value Distributions	79
Appen	dix D -	Ultrasonic wall thickness measurement	80
D.1	Backg	round	80
D.2	Proba	bility of detection	80
D.3	3 Measurement accuracy		82
D.4	Qualif	ication of inspection	82
D.5	Devel	opments to improve inspection performance	83
	D.5.1	Phased array systems	83
	D.5.2	Ultrasonic system on-board the robot	83
	D.5.3	Signal processing enhancements	
Refere	nces		85
CENALL	۸ Dublia	ration, Foodback Form	97

Figures

Figure 3-1: Illustration of different corrosion densities (low on left and high on right)	14
Figure 3-2: Regions of different size having different local densities	14
Figure 3-3: Homogeneous conditions on left, non-homogeneous conditions on right	15
Figure 4-1: Coverage required for d*=0.1	21
Figure 4-2: Coverage required for d* =0.15	21
Figure 4-3: Coverage required for d*=0.2	22
Figure 4-4: Coverage required for d*=0.25	22
Figure 4-5: Coverage required for d*=0.3	23
Figure 5-1: Behaviour of the three different extreme value distribution types	28
Figure 5-2: Illustration of data from a normal distribution shown in a normal probability plot	31
Figure 5-3: Normal probability plot showing the transition between scans with and without	
corrosion	32
Figure 5-4: Thickness data shown on a Type 1 probability plotplot	33
Figure 5-5: Type 1 probability plot for data from scans classified as having corrosion present	34
Figure 5-6: Probability plot for data which conforms reasonably to a Type 1 distribution	36
Figure 5-7: Probability plot for data which is lighter tailed than Type 1	36
Figure 5-8: Probability plot for data which is lighter tailed than Type 1	37
Figure 5-9: Probability plot for data appears substantially lighter tailed than Type 1	37
Figure 5-10: Probability plot for data where the tail appears heavier than Type 1	38
. Figure 5-11: Probability plot for data where the tail appears substantially heavier than Type 1	38
Figure 5-12: Probability plot where there is a substantial deviation in the tail behaviour	39
Figure 5-13: Standard deviation of the parameters vs sample size	41
Figure 5-14: Type 1 probability plot for the example data	44
Figure 5-15: Plot showing the fitted distribution fitted and the data	45
Figure 5-16: Plot showing the distributions for a single region and for the overall	
area of interest	46
Figure 5-17: Minimum coverage required for dmax=0.375, d*=0.125 at different densities	50
Figure 5-18: Effect of increasing d* on minimum coverage required for a density of 0.1	51
Figure 5-19: Effect of increasing d* on minimum coverage required for a density of 0.2	51
Figure B-1: Type 1 probability plot based on the thickness datadata	71
Figure B-2: Graphical presentation of results for Example 4	73
Figure B-3: Type 1 probability plot based on the thickness datadata	75
Figure B-4: Distributions for maxima and minima for comparison	76
Figure B-5: Graphical presentation of results for Example 5	77

Tables

Table 4-1: Coverage required (in percent) for different values of detection threshold	24
Table 5-1: Table of minimum thickness values (mm)	44
Table B-1: Data for Example 1	65
Table B-2: Data for Example 3	68
Table B-3: Reported minimum thicknesses (mm) for the scans classified as containing corrosion	70
Table B-4: Reported minimum thicknesses (mm) for the scans classified as containing corrosion	74